¥ NOVATOR

SOLUTIONS

Andrei Zagorodni
Stockholm

From Interfaces to Full-Scale Multiple Inheritance

Interfaces introduced new dimension in LabVIEW OOP architectures. Full-scale multiple inheritance could
offer even more possibilities. The presentation describes solution and toolkit for implementing multiple
parent classes and class branches. The basic idea is new thus feedback and brainstorming following the
presentation would contribute to further concept development.

-«
> NOVATOR

SOLUTIONS

Andrei Zagorodni

* CLA, PhD

 Works with LabVIEW from 1994 or 1995

* Works only with LabVIEW from 2009
Main area or interests:

e SW architecture

¥ NovAaTOR

4 SOLUTIONS

v’ Products, Services & Turn-Key Solutions provider
v/ 1SO 9001 & 1SO 14001 certified
v National Instruments Gold Alliance Partner with RF & Wireless specialty

Spectral Data Analysis (SDA) Control Automate Test (CAT) Remote Measurement (RM)
* Wideband Recorders * Control System Development * Remote Sensors
* Multichannel Receivers * Test System Development e |oT
K Customized RF/SDR Solutions/ \° LabVIEW & TestStand / \ * Telemetry /
Consulting
BB [

14001 9001 o

Content

* Why do we need multiple inheritance?

* Concept of Interface-based classes step-by-step
* AZM Toolkit

* Non-canonical OOP behavior

* Questions and brainstorming

Device 1

 Voltmeter

Device 2
» Digital I/0

We have
problem
here!

/

DAQ workstation
DAQ
A
Device 5
Volt Digital * Voltage
meter 1/0 * Current
« Impedance

Device 3]
USB-6009

Voltmeter
Digital 1/0

~

Device 4
* Voltmeter
* Frequency meter

\| * Number of cats in GDevCon presentations |

' wovnfOR

SOLUTIONS

Solution? Interfaces! Interfaces?

Device
Voltmeter Digital 1/0
H A T
i USB i PXI
"""""" T """""" """""""""""" TTTTTTTTTTT T A !
Device 1 Device 2 Device 3 Device 4 Device 5
* Voltmeter » Digital I/0 * Voltmeter * Voltmeter * Volt
» Digital I/0 Frequency meter| |+ Current
« Impedance
« Cats
3 NQVATOR

Interfaces

e Class can inherit from many different interfaces

 Even more: interface can have own non-abstract methods;

i.e., own code

e Unfortunately: interface cannot have attributes

* Indeed, an interface with attributes is a fully-capable class

Can we solve this single limitation?

-«
> NOVATOR

SOLUTIONS

Multiple inheritance

Device
Voltmeter Digital 1/0
: : ¥

Device 1 Device 2 Device 3 Device 4 Device 5
* Voltmeter » Digital I/0 * Voltmeter * Voltmeter * Volt
» Digital I/0 Frequency meter| |+ Current
« Impedance
« Cats

-«
> NOVATOR

SOLUTIONS

Can we supply an Interface with attributes?

* Using available tools

* |.e. using conventional LabVIEW code

* Preferably without calls to dll-s or vi.lib

*Yes, let’'s do it

* Descriptor
» Data type definition
* Method definitions: names + terminal patterns

LabVIEW Interface

lj—}- @ Interface.lvclass

i i .
. i+ |@) Method-1.vi .
| L@ Method-2vi Not only
* Code
{4 N Error 't
Interface in Interface out

LE‘ B s é
/ * |s interface a class?

*No
* What is missing?
B [e Attributes

-«
> NOVATOR

SOLUTIONS

Let’s start from FGV (Functional Global Variable)

* One set of values for all instances of the class
e Class attributes

Interface is not interface now but
a Singleton class

= @ Interface.lvclass

. [l ClassAttributes.ctl

@. Interface_ClassAttributes.vi
. i@ Method-1.vi

| L&) Method-24i * Good achievement but not good enough

* \We need own set of attributes for each instance

-«
> NOVATOR

SOLUTIONS

We need object attributes

* Map of values
* Type of the key?

* Interface data type would be perfect

* |s it possible?

* No! Because:
* The wire "secretly” carries object data cluster
e Changing attribute value would alter the key

-«
> NOVATOR

SOLUTIONS

Indeed: Simple test

LVClass in LVClass out
i TR E

[Text_1}| string W Text_2+ string [t

[

o putOay = Size =2

LWClass in LVClass out
- ’ N
OE-T E E OET
f Text 1 H string |r-|->| 1
size
Sria o # 1231 S I Ze -— 1

—
| 1!

IText_1 H string |-|->|

-«
> NOVATOR

SOLUTIONS

Requirements to the key
Yes! GOOP classes
* Only two requirements
* Key must be unique for each object
* Key must not change during whole HNo Error ~F]

||fet|me Of the ObJeCt reference in - reference out

= [Ref]

Can LabVIEW class wire satisfy these
requirements? g

?\

Error Out

GOOP class wire

 Carries only unique refnum
* The refnum is assigned when the object is created and disposed by object destructor

-«
> NOVATOR

SOLUTIONS

Interface-based class: FGV+Map-based attribute accessor

= N My Computer ‘ Ta[No Error ~p
= §@ Interface.lvclass
i i |@" Interface_Attributes.vi prmm— ——
- i [k ObjectAttributes.ctl v "get’
4 @ Parent.lvclass =
. @ Child.lvclass bject in [258 ca - cleanup i T object o

* Interface is converted | e -
: _i
to fully-capable class | | |

If only GOOP classes inherit | | oo
from such i-Classes

error in (no error)' =il

=

3 (==t error out
/7,

-«
> NOVATOR

SOLUTIONS

Destructor of GOOP4 class inheriting from i-Class

¢ cleanup ¥

z 1
reference in |Lgey wp F||reference out

DVE =P L

- -
Attnbutel
-

[Clean up resources

e
Error In |[LB= [- g: +7

am Error Out

-«
> NOVATOR

SOLUTIONS

Inheriting from i-Class

}

= B My Computer

4 g Interfacelvclass
- @ Parentlvclass

@ Child.lvclass
%j‘ Dependencies

.. ‘@ Build Specifications

a

Let's call it i-Class

* |s this solution good enough?

-«
> NOVATOR

SOLUTIONS

Limitation

* There is no attribute-locking

* Race conditions cannot be prevented but only debugged in the
same way as with any other FGV.

* Different approaches for accessing attributes are confusing.

E Mo Error 't

25| Attributel

Error In ?

Error Out

|Set value to class attribute| |Set value to i-Class attribute |N

-«
> NOVATOR

SOLUTIONS

Solution?

Data value references (DVR) in both

* GOOP4 classes

¢ i-Classes

Interface-based class: FGV+Map+DVR-based attribute accessor

= § My Computer
= g Interface.lvclass
i b @ Interface_Attributes.vi
. b [k ObjectAttributes.ctl
&+ @ Parentlvclass

= Child.Ivclass wbject i [T o BT ctiect
%5' Dependencies
.. @ Build Specifications

B~~~ B+ HIGZIN objec

* DVR map instead
of attribute cluster
map

-«
> NOVATOR

SOLUTIONS

Same approach in GOOP4 and i-Classes

E Mo Error 't

+only DVR ~

reference out

reference in |[LOBJ
Hﬁ: g"ﬂ "ii. =
’7 Attributel .: .E
Error In ﬁm HE Error Qut
|SEt s attribute‘ ‘Set value to i-Class attribute‘
|: Ma Error 't
o, o . + only DVR +|
* Race conditions are prevented with e nmm—a—
5};: DU = 358 e
In Place Element Structure. [e
Attributel pamy
* Same approach for accessing
attributes.
Errl:rrln?_lw—====== 2 == b bt] | Error Qut

-«
> NOVATOR

SOLUTIONS

Toolkit

TTHT T T T TR TN T d

= N My Computer = N My Computer

1 -~
L. ." Interface.lvclas = gg Interface.lvclass

' @ Parent.lvclass ;»--lg?"lnterface_Attributes.vi
@ @ Child.lvclass Open . - [k3" ObjectAttributes.ct
% Dependencies i @ Parent.vclass

‘. % Build Specificat - @ Child.vclass

[&? Dependencies

New »

Explore...
Show in Files View Ctrl+E

Add > .- 4 Build Specifications
Show Class Hierarchy

Save »

Show Error Window

Convert to class

GOOP >

-«
> NOVATOR

SOLUTIONS

Add i-Class as parent

= § My Computer
- gg Interface.lvclass
&+ @ Parentlvclass

Set parent to Parent.lvclass

File Window Help

L @ n

9 W Child.lvclass

i %' Dependenci

New

.. ‘@ Build Specifi

Open
Explore...
Show in Files View

Ctrl+E

Add

Go to Parent Class

Show Class Hierarchy

Save

Find
Find Project ltems...

Show Error Window

GOOP

i-Claases & Interfaces

|\men’a-_e

Type

Ancestorship

4

Set parent interface

Control consistency

P
¥

NOVATOR

SOLUTIONS

Inheriting from i-Class: constructor and destructor

] Mo Error 't

Important:

* i-Class accessor is added in
constructor and destructor
of the class

* Corresponding element of
the i-Class map has the
same lifetime as object of
the GOOP class

-«
> NOVATOR

SOLUTIONS

What to do? Interface was a parent before conversion to i-Class

Step_02.lvproj - Project Explorer — O Pt
File Edit View Project Operate Window Help
” ';'D =] ' | I % B _ “ ﬂ Measuremen‘t & Automation Explorer...
Instrumentation »
ltems Files
GOOP »
Project ltems UML N
E@ Project: Step_02.lvproj
= W My Computer Compare »
& ag Interfacelvclass Merge »
it @ Parent.vclass Profile N
i @ Child.lvclass Security >
i+ %' Dependencies
.. % Build Specifications User Name...
Build Application (EXE) fron
Source Control »
LLB Manager...
Import
Shared Variable
Distributed System Manager
Find Vis on Disk...
Prepare Example Vls for NI Example Finder...
Remote Panel Connection Manager...
Web Publishing Tool...
Consistency tool...

-«
> NOVATOR

SOLUTIONS

Consistency tool

E AZM Consistency tool: Investigation results
File Edit View Project Operate Tools Window Help

Eﬁ Consistency tool
File Window Help

Inconsistency

= hvclass i-Class

ild.lvclass Class
Child.lvclass:Child_Create.vi constructor | No parent constructor
Child.lvclass:Destroy.vi destructor No parent destructor

P
¥

NOVATOR

SOLUTIONS

Limitations

e Conventional class can inherit from “main” parent (GOOP-class) and
secondary parents (i-Classes).

* There is no way to convert main to secondary and vice versa.
* GOOP-class can inherit from i-Class, but i-Class cannot inherit from GOOP-class.

* i-Class is always abstract.
* |t cannot be instantiated.

* i-Classes can be used only with GOOP4
* Probably they can be used with GOOP3 and G#.
* They can never be used with Native LabVIEW classes.

* Non-canonical OOP behavior.

-«
> NOVATOR

SOLUTIONS

Canonical OOP behavior

Subclass is superclass with added or overridden members:

* methods,
e attributes.

GOOP class P Interface 1 Interface 1
A A
GOOP class C Interface 2 GOOP class C

Single limitation: Interface cannot inherit from a class

i-Class a i-Class a Interface 1
A
i-Class B GOOP class C i-Class B

-«
> NOVATOR

SOLUTIONS

Non-canonical OOP behavior

But for LabVIEW... i-Class is still an Interface!

* |t is absolutely legal from

nterface 1 i-Class 1 LabVIEW point of view!
- b
; —— i
Interflace 2 Interflace 2
A
GOOPIcIass C

-«
> NOVATOR

SOLUTIONS

Non-canonical OOP behavior

We solve the problem if we can agree on:
Interface inheriting from i-Class is i-Class

i-Class 1 We have an excuse
i-Class 2
* |tis native LabVIEW class, but...
there is an analogy
GOOP class C

-«
> NOVATOR

SOLUTIONS

AZlInterface.net
andrei.zagorodni@novatorsolutions.se

"—a z AZ Interface Toolkit

) § rf1 t = AZ interface is a solution for implementing Java-like interface architecture in LabVIEW projects.
ace

Contrary to other solutions providing Java-like interface architecture, AZ interface is simple while fulfilling basic programming demands.

Downloads and Notes

Version 2.2.0-beta/alpha - last version
2019-04-22

AZ interface v.2.2.0.0-beta/alpha (4.2MB ZIP)

» Only manual (0.6MB PDF)

» Improvements

-«
> NOVATOR

SOLUTIONS

Questions for brainstorming

* What is forgotten?

* What is wrong?

* What is ok but can be improved?

* Are there better ideas or solutions?

-«
N NOVATOR

SOLUTIONS

Andrei Zagorodni
Stockholm

Thank youl!

SSSSSSSSS

