
AZInterface:
OOP Interfaces in LabVIEW
Solution and Implementations

Andrei Zagorodni
2019-04-02 Krakow

This presentation describes version 2.0.0.0 of AZInterface



Content

• Interfaces in OOP
– multiple inheritance
– concept of interface
– available solutions
– benchmarking

• AZInterfaces
– how to
– what do we get
– how does it work
– how to use
– pitfalls

• What do we need more?

www.azinterface.net



Common Abstraction Layer: Superclass

Not a real project, of course.



LabVIEW: Common Superclass

Does it work?

We wish



LabVIEW: Common Superclass

Does it work?

We wish

Ya, right…

We got



Multiple Inheritance



Interfaces

Interface can be considered as a class without attributes,
and with all methods being abstract.



Interface

Available in LabVIEW?

• Interface is a definition class
– No code
– No data structures
– Only empty methods to override
– Own data type



Creating GOOP Interface

Two types of interfaces
• Why two?

• Because no one of them isstraightforward



GOOP Interface by Aggregation

Our wish



GOOP Interface by Aggregation

Our wish

What do we get



GOOP Interface by VI server

Our wish



GOOP Interface by VI server

It works! But…Our wishWe get.

There is no interface data type



Interface by VI Server: Service Code



Interface by VI Server: Scripting



Benchmarking



Comparing Different Solutions

?NoToo muchAdditional code

Yes

Good

No

No

Super-slow
30000 %

GOOP by VI Server

?BadReadability

?NoCode in VI.lib

?StraightDependency

?YesInterface data type

?OK
100 %

Benchmarking:
time spent

AZInterface
v.2

GOOP by
Aggregation

Common superclass (GOOP): Benchmarking 25-30 %



Disclaimer

• What a LabVIEW programmer does when he is not working writingLabVIEW programs?
• He writes hobby LabVIEW programs

• AZInterface is a hobby project with all fun andconsequences
www.azinterface.net



AZ Interfaces

• LVOOP class is defined as an Interface.
– Otherwise it is a class supplied with few specific members.

• Any class can implement such an Interface.
• Relationships between classes and Interfaces are defined byCommunity scope. Interface is added in list of Friends of theinterface-implementing class.

– Anyhow, I newer met a developer who used Community scope for anythingbut quick fixes



Create Interface



New AZInterface

Interface

cast_to_Interface – method automatically
included in BD of corresponding methods of
interface-implementing classes

read_Object – double-purpose method: provides
access to original class instance and destroys
interface instance (only if the interface has
reentrant methods).



New Interface Method: Create



New Interface Method: FP

• Think about terminal patterntwice.
• It will be difficult to alter atlater stages.
• As usual in OOP



New Interface Method: BD
modified when first implemented in a class



Terminal pattern limitation

• Use only 20-connetor terminal patterns in allAZI methods!
• Anyhow, using the same pattern through thewhole project is a good practice.
• And I hate such a mess.



Apply Interface

Attention!
• If you implement interface method but the methodalready exists in the class, the methodsmust havecomplimentary terminal patterns.
• There is no build-in protection from errors here(v.2.0.0)!
• I believe this issue should be prioritized in nextversion.



Applied Interfaces defined as Friends



Method Implemented in Class

BD is empty



Code of the Interface Method
modified when first implemented in a class

…But?
• Created class method has object terminals of the class
• Interface method keeps object cast to LabVIEW Object type
• Call By Reference does not support Dynamic Dispatch



Wrapping utility method (“middleman”)

• Belongs to the class (CAN_SIM:util_GUI_cls_show.vi)
• Has object terminals of LabVIEW Object type
• Invoked by interface method (GUI:how.vi)
• Invokes actual class method (CAN_SIM:show.vi)

Transfers call from interfaceto class“Provides” terminals ofnecessary data type



Method cast_to_<interface name>.vi

1. Interface is applied to class
– The method is created butbroken so far



Method cast_to_<interface name>.vi

1. Interface is applied to class
– The method is created butbroken so far2. First method is implemented



Method cast_to_<interface name>.vi

1. Interface is applied to class
– The method is created butbroken so far2. First method is implemented3. Second method isimplemented4. And so on…



Intermediate summary• Interface (INTF.lvclass)
– Custom methods
– Method read_Object
– Utility cast_to_Interface• Class (CLS.lvclass)
– Custom methods
– Method cast_to_INTF
– Utilities util_INTF_cls_MTD

• Utilities must not becustomized
– They are automatically created
– They are automatically modified
– They are automatically includedin the codeBut?! How to use?



Method execution at interface abstraction level



Comparing Different Solutions

SomeNoToo muchAdditional code

Yes

Good

No

No

Super-slow
30000 %

GOOP by VI Server

GoodBadReadability

NoNoCode in VI.lib

StraightStraightDependency

YesYesInterface data type

Good
20 %

OK
100 %

Benchmarking:
time spent

AZInterface
2.0.0

GOOP by
Aggregation

Common superclass (GOOP): Benchmarking 25-30 %



Is it it?
Not yet

Reentrant VI-s

Real challenge!



New Reentrant Interface Method: Create

• Shared clone reentrant execution isselected for this method
• All corresponding class methods shallhave the same reentrancy setting

– That is good to be frank



Method cast_to_<interface name>.vi



Method cast_to_<interface name>.vi



Interface method read_Object.vi

• If Interface has no reentrantmethods, both cases (Falseand True) contain the samecode.



Interface method read_Object.vi

• If Interface has no reentrantmethods, both cases (Falseand True) contain the samecode.
• If Interface has no reentrantmethods, both cases (Falseand True) contain the samecode.
• Case True closes referencesto reentrant methods

– Thus read_Object.vi works asdestructor
– It MUST be used when theinterface instance is notneeded any more



Reentrant method execution at interface abstraction level



Reentrant method execution at interface abstraction level

We create another copy that must be destroyed



Is it it?
Almost



One more advantage

• You can apply the same Interface within the same project to anytype of class
– GOOP4 classes
– GOOP3 classes
– G# classes
– Native LVOOP classes

• This means you can create common abstraction level for anycombination of OOP models



Consistency Tool

• I had presented Consistency tool when we discussedprototype version (v.0.0.0) of AZInterface at CLA-E 2018.
• There was no Consistency tool any more in v.1 and v.2.0because there was no need in it.
• But probably we need it.
• There is Consistency tool in v.2.1.



Consistency Tool



Consistency Tool: Alter terminal pattern of AZI method



Fix Interface method first and Class methods after



It is it
Thank you!

www.azinterface.net


