AZ Interface
version 1.0.0

Andrel Zagorodni
2018-05-08

inter
face

Content

1

2

3

4

[F g1 0o (W Tox 1 o o SRR 3
I R V= £ o] ST RURURRS 3
111 Version 0.0.0-pre-alpha.........ooooeeiienee e 3
112 Version 1.0.0-alPha.......ccoveieiieiiee et 3
1.2 Shortenings and abbreViators...........ccoiiiiiieienee e 4
1.3 Concept of Interfacein other |anQUAJES...........cccevveieeiesicie e 4
AZ Interface Background 1AEaS............ooeeiiiiiieiie e e 5
2.1 SOIULIONS.....euieieeteste sttt sttt e bt e bbbt et e et et et e sb e e be s b neeneenean 5
2.2 FEAIUIES. ...t e e s e e s be e s ne e e naneas 5
pZR T I 1 ¢ 1] 7= 1o LTRSSV 5
System Requirements and INSLall@tionccooeiiriineniei e 6
TNt R = o (1 = 1101 1 USROS 6
3.2 INSLAIAHION .. e na e e nre s 6
321 1= [oTor= 1o o TSSOSO 6
3.2.2 RECOMPITING ..ttt s nre s 6
Primary FUNCtionS Of the TOOIKIL.........c.coiviiiiieii e 7
N R O 11 0 [V4 USRS 7
4.2 Creating AZI MENOU.ccvieiieceee et sreeaesnaennean 7
4.3 Applying AZI and AZI methodSto ClaSS........ccoveriiiieiiriesee e 8
4.4 APPIYING AZI 10 ClBSS.....cciiiieiieieee ettt et sae e reetessaesseesesneensenn 8
45 Implementing AZI methods in Class.........coccoiieiiiiiieiie e 9
HOW TO USE ...t nne e s e nn e nnn e 9
51 GeNEral EXaAMPIE......coiieieiie e e nre s 9
52 Working With class hierarChi€scccovveviiiesi e e 10
521 Sub-classes of AZI-implementing ClasS........coocveiieerenienee e 10
522 Two AZI-implementing classes belonging to same hierarchycccccccee... 10
53 Altering terminals of AZI Method..........ccooviieiicie e 10
ADOUL @NA CONLACES ...ttt sttt st et e sae e b e neesneeneeas 11
6.1 LiCENSE AQrEEMENLei e cieeie e eteeieeee st e te ettt e et e e e sreenaeea e e neenreeneennes 11
L O] 4 | = o £ T OO PSPPI 12
6.3 Support and COMMUNICALIONSccereereeerieeeeseerieseeseeseesee e eeesreesseeseesseesseeneesnes 13

1 Introduction

AZ Interface (AZl) is a solution for implementing Java-like interface architecture in
LabVIEW projects.

Contrary to other solutions providing Java-like interface architecture, AZ interfaceis simple
while fulfilling basic programming demands.

1.1 Versions

1.1.1 Version 0.0.0-pre-alpha
First functional version of the toolkit.

The version was presented at European CLA summit in Madrid, 2018.

1.1.2 Version 1.0.0-alpha
The version basically differs from v.0.0.0.

Thisversion isresult of brainstorming at European CLA Summit 2018:
first, the concept was presented as aregular lecture;

second, pitfalls were extensively discussed/brainstormed with Stephen Loftus-Mercer,
National Instruments.

third, the lecture was repeated and many other experts participated in brainstorming.
I highly appreciate contribution of all participants of these sessions/Andrei Zagorodni

1.1.2.1 Release 1.0.0.0
First public release of AZ Interface software.

1.1.2.2 Release 1.0.0.1
Public release including few small fixes.

Main fix: Improved HD folder selection algorithm for newly created AZ Interface.

1.2 Shortenings and abbreviators

Abbreviator Description

AZI AZ Interface

HD Hard Disk

[LabVIEW] Location of LabVIEW in this computer; for example
C:\Program Fil es (x86)\ National |nstrunents\LabVI EW 2016\

OOoP Object-Oriented Programming

SW Software; AZ Interface software

1.3 Concept of Interface in other languages
Concept of Interface was developed to substitute multiple inheritance in some object oriented
languages (OOP languages). Probably the most known of them is Java.

Similarly to LabVIEW, a Java class can have only one parent class; i.e. class hierarchies have
tree-like structures. Java Interface allows creating "cross-links' between trees; i.e. smulate
multi-parent behavior. The concept isillustrated by Figure 1.

=<interface==
InterfaceC

SuperA izl R SuperB
|
|
|
e e e e M e T E
1 |
1 |
1 |
SubclassA SubclassB
+Msthod +Methodi
Figure 1 Interface in UML diagram

Subcl assAand Subcl assB belong to different hierarchical trees. | nt er f aceC provides
common behavior to these classes without any effect on hierarchical positions of classes
Super Aand Super B.

Java Interface provides an own data type allowing to work at corresponding abstraction layer.

Java Interface can be considered as an Abstract Class having only abstract methods.
Attributes are not alowed in Interfaces. Otherwise | nt er f aceC behaves exactly in the
same way as any super-class.

2 AZ Interface Background ldeas

2.1 Solutions

AZ Interface (AZl) implements obvious solution utilizing capacity of Call By Reference
node.

Each AZI is assembled as a native LabVIEW class. No class hierarchies are allowed between
AZl-s.

Relation between AZI and Class applying the interface is defined by adding each other in list
of Friends (Community scope).

2.2 Features
AZIl-salow creating abstraction levels independent on hierarchical structures of classes.

The AZI-s dlow abstraction of functionality independently on implemented OOP moddl, if
modern models are used; i.e. same methods of the same AZI can be applied in native
LabVIEW classes, GOOP3 classes, GOOP4 classes, and G# classes.

LabVIEW code created with toolkit can be opened, edited and/or run in any LabVIEW
computer without installation of the toolkit. The code is not limited to LabVIEW
development environment; corresponding EXE-files can be run under conventional LabVIEW
RTE. However, developer must take care about inclusion of invoked code in build
specification (that is the same for any LabVIEW code invoked with Call By Reference node).

2.3 Limitations
The code is not imperative at development time.

No AZI hierarchy can be established.

Current version is tested only for My Computer branch of current LabVIEW Project.
Use of the toolkit with other targets was not tested yet. This limitation will be resolved
in future.

AZ Interface Consistency tool announced for v.0.0.0 is not included in v.1.0.0
package. Need in functions included in this tool disappeared due too atering of the
whole concept. New tool will be created in future if new needs will be identified.

Connector pane of AZI methods use terminal pattern 6x4x4x6 only. Altering the
terminal pattern would cause errors that are difficult to fix.

Connector pane terminals of each AZI method must be assigned before the method is
applied in one of classes. Later changes could require significant efforts. | am still
thinking how to do such operations easier.

This version does not support method reentrancy. Setting corresponding VI-s as
reentrant does not help. Clones of reentrant methods are executed consequently. | am
working to solve this limitation in future versions.

3 System Requirements and Installation

3.1 Requirements

Current version of the toolkit is developed for LabVIEW 2016. No additional package is
required.

3.2 Installation

No installer is supplied with current version of the toolkit. Files must be manually copied in
corresponding LabVIEW directories.

3.2.1 File location

Files must be copied in different directories of LabVIEW. The table below refersto
[LabVI EW directory that means, for example,
C.\Program Fi |l es (x86)\ National I|nstrunents\LabVl EW 2016\

Content of the following source directories must be copied into corresponding target
directories.

Supplied files Target LabVIEW directory

GProvi ders [LabVI EW \ r esour ce\ Fr anewor k\ Pr ovi der s\ GPr ovi der s\
Provi ders [LabVI EW \ r esour ce\ Fr anewor k\ Pr ovi der s\

hel p [LabVI EW\ hel p\

3.2.2 Recompiling

In some cases files of the toolkit must be recompiled after the copying; f. ex. VIs must be re-
saved accounting to new locations of sub-VIs.

Do to it open consequently two Vls. These VIs are used only for manual installation. Ignore
messages concerning atered file locations. Order of opening could be important:

1. OpenLabVIEW.
2. [LabVIEW\ hel p\AZ Interfaces\ _1 all _hel p_AZ Interfaces. vi

3. [LabVI EW\ r esour ce\ Framewor k\ Provi der s\ AZ_| nt er f aces\
3 all _providers_AZ Interfaces.vi

4. Click menu File> Save All
5. Closedl VI-s.
6. Restart LabVIEW.

4 Primary Functions of the Toolkit

4.1 Creating AZI

1. Right-click the My Computer or any Virtual Folder and select menu AZ I nterfaces
> Create AZ Interface.
2. Createlnterface dialog will be opened.
3. Write name of new AZI class, use other input fields if needed.
4. Click Create Interface.
LabVIEW class will be created in selected location. Newly created AZI includes three
members:
cast _to_Interface.vi - community-scope utility method caled only by

corresponding methods of AZI-applying classes.

met hod_refs. ctl — utility type definition that is part of AZI private data. The type
definition is aso used in automatically created methods of AZI-applying classes.

read_QObj ect. vi — method used for casting from AZI data type to data type of
particular class. The method should usually be followed with node To More Specific
Class.

4.2 Creating AZI method

1

Right-click the AZI class in LabVIEW project and select menu AZ Interfaces >
Create Interface method.

2. Write name of the method in the opened dialog and click Create method button.
3. Open Front Panel of the newly created method.
4. Create necessary controls and indicators and connect them to terminal pattern of the

VI. Do not dter the termina pattern. Do not disconnect existing terminals.
ATTENTION: dtering terminals (number of terminals, they assigning in terminal
pattern, data types) after overriding the method in AZI-applying class(es) will cause a
need in extensive manual work. Thus be careful at this step.

5. Do not edit Block Diagram of the method.
6. Savethe method.
7. Savethe whole AZI (Select classin the project then right-click menu Save > Save Al

(this Class) or select menu File> Save All).

Block Diagram of the newly created method (see Figure 2) contains default code and
terminals of user-created controls/indicators. This code will be automatically altered when the
method isfirst applied in any AZI-applying class.

Do not edit BD| sying

Mianene Faber
[
Boolean Path
=
Interface_ohject in i : Interface_ohject out
5 method refs.method.vi G B method refs.method.vi it
OB B ot ettt ot - — “E> A [EEREREE $OBT]
Object —_— Object Gl
e
error in (no error) error out

Figure 2 Example of AZI method

4.3 Applying AZI and AZI methods to Class
The same dialog is used for applying AZI to Class and for implementing AZI Method in the
Class.

Right-click the any class in the project then select menu AZ Interfaces > Apply

Interface. The dialog appears listing all available AZI-s (Figure 3). Selection of an
AZl inthelist, populates list of methods belonging to the AZI.

L2 Implerent intsrface o G lvclass ez |
File Window Help |ﬁ
2 @n @ i |

interface methods

Figure 3 GUI used for applying AZI to Class.

4.4 Applying AZl to Class
Select an item from AZ| list at left-hand side. The list shows all AZI-s available in the
Project.

If selected AZI is already applied to the Class, button at bottom of the list is disabled.
The button text is "Interface is applied” (see Figure 3). In this case select another AZI,
continue working with methods (section 4.5), or click Close.

Click button Apply interface.
The Class and the AZI get each other in their lists of Friends.

New method is added to the Class: cast _t o_azi Nane. vi , where azi Nane is name of
the AZI. This method is used for casting of corresponding Object to type of the AZI. In some
sense the casting is similar to one performed by nodes To More Specific Class and To More
Generic Class.

The method cast _t o_azi Nane. vi isinitialy broken. It will be repaired automatically
(its Block Diagram altered) with applying of first AZI method in the Class.

4.5 Implementing AZlI methods in Class
Select an item from AZI list at left-hand side (see Figure 3).

List interface methods at right-hand shows available AZI methods.

If selected AZI is not yet applied to the Class, button Apply interface at bottom of the
list is enabled. In this case click button Apply interface, select another AZI, or click
Close.

Select method in the list interface methods. Methods already applied in this Class are
disabled.

Click button Implement method.

The method will be added in the Class supplied with necessary terminal pattern. Block
Diagram of the method is initially empty. All coding of the method (including wiring of
class terminals) must be performed manually.

Beside of the method, an utility method uti| _azi Name_cl s_net hodNane. vi is
added in the Class. Name of the utility method contains name of the AZI (azi Nane) and
name of the actua method (met hodNane). The method is created automaticaly and
should not be altered.

5 How to Use

5.1 General example

Use of AZI-s can be illustrated by block diagram presented in Figure 4. Three classes are not
hierarchically related while both apply the same AZI.

Objects belonging to three different OOP models are created (GOOP, G#, and Native
LV Class) then processed at common abstraction level of the AZI. Finally, the objects are cast
back to initial class types.

1000000000 0000000 00.«0 0«0

Create Objects of | | Cast objects Work at Interface abstraction level Cast to types of particular classes | | Processing at
different types to Interface levels of
abstraction N particular

classses

. ' o

T INT ||

: .!}‘ o |} GOOF
OB JEGT L) .

HET

R il S Eﬂf

I
(i3
& = ,. e
B
a T3 |
i .!3 n - 3
CEJECT ﬁ
i b [
: i
I — : i |‘
g ETTIPRY YFRRIN o i -
L] Ly
OBJECT [t L) FOST.

FROC.

OO0O000O0Q03O0Q3O3A0O0D«0n0:

Figure 4 Example of AZI use.

5.2 Working with class hierarchies

5.2.1 Sub-classes of AZl-implementing class

Any child of an AZI-applying class can have corresponding AZI method(s). There is no need
to apply AZI to each sub-class of the hierarchy. However, object terminals of corresponding
methods must be Dynamic Dispatch.

5.2.2 Two AZl-implementing classes belonging to same hierarchy

A need in applying the same AZI to different classes of the same hierarchy is rare (see
section 5.2.1). At least | cannot identify such a need. However; this can be done atering type
of object terminals of all conflicting methods to Dynamic Dispatch.

5.3 Altering terminals of AZI method

Connector pane terminals of each AZI method must be assigned before the method is applied
in one of AZl-applying classes. However, a need to alter the terminal signature could arise.
Terminal signatures of the following must differ only by type of object terminals:

AZI method must have object terminals of AZI type.

Corresponding class methods must have object terminals of corresponding class
types.

Utility methods uti | _azi Name_cl s_net hodNane. vi (see section 4.5) must
have object terminals of LabVIEW Object typein all classes.

Corresponding element (VI Refnum) of net hod _refs.ctl (see section 4.1)
belonging to the AZI must have object terminals of LabVIEW Object type; i.e. the

10

glement must have the same Signature as utility = method
util _azi Nanme_cl s_net hodNane. vi .

6 About and Contacts

Al Interface Toolkit

LabVIEW:
National Instruments Corporation

’ Copyright © 2016 National Instruments Corporation

-

inter —

f a C e Developed by Andrei Zagorodn
andre1.zage ONs.5e
ersion 1.0.0.0

License Agreement -

m

|1 Acknowledgement

CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE USING
|THIS SOFTWARE. BY USING THIS FREEWARE VERSION YOU ACKNOWLEDGE
THAT YOU HAVE READ THIS LIMITED WARRANTY, UNDERSTAND IT, AND
|AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU ALSO AGREE

|THAT UNLESS YOU HAVE A DIFFERENT LICENSE AGREEMENT SIGNED BY
|ANDREI ZAGORODNI YOUR USE OF THIS SOFTWARE INDICATES YOUR
ACCEPTANCE OF THIS LICENSE AGREEMENT AND WARRANTY. IF YOU DO

|NOT AGREE TO THE TERMS OF THIS AGREEMENT, DELETE THE SOFTWARE
|FROM ALL STORAGE MEDIA, -

Figure 5 About

6.1 License Agreement

1 Acknowledgement

CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE USING
THIS SOFTWARE. BY USING THIS FREEWARE VERSION YOU ACKNOWLEDGE
THAT YOU HAVE READ THIS LIMITED WARRANTY, UNDERSTAND IT, AND
AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU ALSO AGREE
THAT UNLESS YOU HAVE A DIFFERENT LICENSE AGREEMENT SIGNED BY
ANDRElI ZAGORODNI YOUR USE OF THIS SOFTWARE INDICATES YOUR
ACCEPTANCE OF THIS LICENSE AGREEMENT AND WARRANTY. IF YOU DO NOT
AGREE TO THE TERMS OF THIS AGREEMENT, DELETE THE SOFTWARE FROM
ALL STORAGE MEDIA.

11

2 License

This Freeware License Agreement (the "Agreement") is a legal agreement between you
("Licensee"), the end-user, and developer of AZ Interface Toolkit Andrei Zagorodni
("Developer") for the use of this software product ("Software"). Commercial as well as non-
commercial useis alowed. By using this Software or storing this program or parts of it on a
computer hard drive (or other media), you agree to be bound by the terms of this Agreement.
Provided that you verify that you are handling the original freeware version you are hereby
licensed to make as many copies of the freeware version of this Software and documentation.
You can dter this Software in any way but Developer does not carry any responsibility for
consequences.

If you ater and/or further develop this Software, documentation (including "help" and
"about") must include reference to original Software, name of its Developer and his contacts.

3 Limited Warranty and Disclaimer of Warranty

The AZ Interface Toolkit EXPRESSLY DISCLAIMS ANY WARRANTY FOR THE
SOFTWARE. THIS SOFTWARE AND THE ACCOMPANYING FILES ARE PROVIDED
"AS IS" AND WITHOUT WARRANTIES AS TO PERFORMANCE OF
MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER EXPRESSED OR
IMPLIED, OR NONINFRINGEMENT. THIS SOFTWARE IS NOT FAULT TOLERANT
AND SHOULD NOT BE USED IN ANY ENVIRONMENT WHICH REQUIRES THIS. NO
LIABILITY FOR DAMAGES. In no event shall AZ Interface Toolkit or its suppliers be
liable for any consequential, incidental or indirect damages whatsoever (including, without
limitation, damages for loss of business profits, business interruption, loss of business
information, or any other pecuniary loss) resulting of the use of or inability to use this
SOFTWARE EVEN IF the Software HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. The entire risk resulting of use or performance of the SOFTWARE
remains with you.

4 Copyright

Copyright (c) by Andrel Zagorodni.

6.2 Contacts
Andrel Zagorodni

andr ei . zagor odni @ovat or sol uti ons. se
Please write AZI or AZ Interfacesin subject line.

12

6.3 Support and communications
| shall appreciate feedback about bugs and bottlenecks identified in this SW.

| promise to read your emails and reply within reasonable time. However do not forget that
the project is developed in my evenings and weekends. Thus the "reasonable time" will solely
depend on my work load.

You are free to modify code of the software. However | do not promise to support the modified
code.

Andrei Zagorodni

13

